Share This

Showing posts with label Physics. Show all posts
Showing posts with label Physics. Show all posts

Thursday, 18 February 2016

Chinese scientists aim high with space gravitational wave project

Gravitational wave detection proposal in the works



Chinese scientists are proposing a space gravitational wave detection project that could either be a part of the European Space Agency’s eLISA project or a parallel project.

The announcement of the discovery of gravitational waves in the United States on Thursday by the Laser Interferometer Gravitational-Wave Observatory has encouraged scientists around the world, with China set to accelerate research. Gravitational waves are tiny ripples in the fabric of space-time caused by violent astronomical events.

Scientists from the pre-research group at the Chinese Academy of Sciences disclosed that the group will finish drafting a plan for a space gravitational wave detection project by the end of this year and will submit it to China’s sci-tech authorities for review.

The Taiji project will include two alternative plans. One is to take a 20 percent share of the European Space Agency’s eLISA project; the other is to launch China’s own satellites by 2033 to authenticate the ESA project.

“Gravitational waves provide us with a new tool to understand the universe, so China has to actively participate in the research,” said Hu Wenrui, a prominent physicist in China and a member of the Chinese Academy of Sciences.

“If we launch our own satellites, we will have a chance to be a world leader in gravitational wave research in the future. If we just participate in the eLISA project, it will also greatly boost China’s research capacity in space science and technology.

“In either case, it depends on the decision-makers’ resolution and the country’s investment,” he said.

The draft will provide different scenarios with budgets ranging from 160 million yuan ($24.3 million) to more than 10 billion yuan.

“Although I am not sure which plan the decision-makers will finally choose, I think the minimum budget of 160 million yuan should not be a problem for China,” Hu said.

The Laser Interferometer Space Antenna’s gravitational wave observatory was the EAS’ cooperative mission with NASA to detect and observe gravitational waves. The project, proposed in 1993, involved three satellites that were arranged in a triangular formation and sent laser beams between each other.

Since NASA withdrew from the project in 2011 because of a budget shortfall, the LISA project evolved into a condensed version known as eLISA.

On Dec 2, the European Space Agency launched the space probe LISA Pathfinder to validate technologies that could be used in the construction of a full-scale eLISA observatory, which is scheduled for launch in 2035.

“Currently, all the operating gravitational wave detection experiments worldwide are ground observatories, which can only detect high-frequency gravitational wave signals,” said Wu Yueliang, deputy president of the University of the Chinese Academy of Sciences.

“A space observatory, without any ground interference or limitation to the length of its detection arms, can spot gravitational waves at lower frequency.”

On February 11, scientists from the Laser Interferometer Gravitational-Wave Observatory in the US confirmed they had detected gravitational waves caused by two black holes merging about 1.3 billion years ago. This was the first time this elusive phenomenon was directly detected since it was predicted by Albert Einstein 100 years ago.

LIGO, currently the most advanced ground facility for gravitational research, includes two gravitational wave detectors in isolated rural areas of the US states of Washington and Louisiana.

“Metaphorically speaking, if the research into gravitational waves is a symphony, the discovery of the LIGO experiment makes a good prelude by proving that the hypothetical wave does exist. But I believe the other movements will mostly be composed of new discoveries from space observatory devices, because the low and middle band — which can only be detected from space — is the most extensive source of gravitational wave,” said Hu, the CAS physicist.

Meanwhile, the Taiji project of the Chinese Academy of Sciences has competitors in China. Sun Yat-sen University in Guangzhou, Guangdong province, proposed the Tianqin project in July. That project will receive a 300 million yuan startup fund from the local government to initiate a four-step plan to send three satellites in search of gravitational waves and other cosmic mysteries.

Li Miao, director of the Institute of Astronomy and Space Science, said it was still too early to tell the specific direction of the future of the university’s Tianqin project.

“The major gravitational wave research program in China is the cooperation with eLISA, which is led by professor Hu Wenrui,” Li was quoted by Guangdong’s Nanfang Daily as saying.

“The reason that eLISA made progress rather slowly was that the member states in Europe held different opinions as to whether gravitational waves exist. Now this has been proved to be true, which will greatly accelerate the pace of research in and out of China,” Li said.

China Daily/Asia News Network

Related:


Video:

China unveils new gravitational wave research plan




Related post:

 

Einstein's gravitational waves took 100 years to prove it right

 

Saturday, 13 February 2016

Einstein's gravitational waves took 100 years to prove it right


Big discovery: When two black holes collided some 1.3 billion years ago, the joining of those two great masses sent forth a wobble that hurtled through space and reached Earth on Sept 14, 2015, when it was picked up by sophisticated instruments - Reuters

 
From Aristotle to Einstein, the world's greatest minds have long theorized about gravity. Here are the highlights, and where the study of gravity is headed next. (Gillian Brockell,Joel Achenbach/TWP)

The “chirp” is bright and bird-like, its pitch rising at the end as though it’s asking a question. To an untrained ear, it resembles a sound effect from a video game more than the faint, billion-year-old echo of the collision of two black holes.

But to the trained ear of experimental physicist, it is the opening note of a cosmic symphony. On Thursday, for the first time in history, scientists announced that they are able to hear the ripples in the space-time continuum that are produced by cosmic events — called gravitational waves. The discovery opens up a new field of scientific research, one in which physicists listen for the secrets of the universe rather than looking for them.

[Everything you need to know about gravitation waves (in gifs)]

“Until this moment, we had our eyes on the sky and we couldn’t hear the music,” said Columbia University astrophysicist Szabolcs Márka, a member of the discovery team, according to the Associated Press. “The skies will never be the same.”

Scientists from the Laser Interferometer Gravitational-wave Observatory (LIGO) announced on Feb. 11 that they have detected gravitational waves, ushering in a new era in the way humans can observe the universe. (Reuters)

Thursday’s moment of revelation has its roots a century earlier, in 1916, when Albert Einstein predicted the existence of gravitational waves as part of his ground-breaking theory of general relativity. The intervening years included brush-offs and boondoggles, false hope, reversals of opinion, an unlikely decision to take a $272 million risk, and a flash of serendipity that seemed too miraculous to be real — but wasn’t.

Here’s how it all happened.

[LIGO’s success was built on many failures]

In 1915, Einstein gave a series of lectures on his General Theory of Relativity, asserting that space and time form a continuum that gets distorted by anything with mass. The effect of that warping is gravity — the force that compels everything, from light to planets to apples dropping from a tree, to follow a curved path through space.

Gravitational waves, which he proposed the following year, are something of a corollary to that theory. If spacetime is the fabric of the cosmos, then huge events in the cosmos — like a pair of black holes banging into each other — must send ripples through it, the way the fabric of a trampoline would vibrate if you bounced two bowling balls onto it. Those ripples are gravitational waves, and they’re all around us, causing time and space to minutely squeeze and expand without us ever noticing. They’re so weak as to be almost undetectable, and yet, according to Einstein’s math at least, they must be there.

But like the entire theory of general relativity, gravitational waves were just a thought experiment, just equations on paper, still unproven by real-world events. And both were controversial. Some people believe that the initial skepticism about Einstein’s theory, plus blatant anti-Semitism — some prominent German physicists called it “world-bluffing Jewish physics,” according to Discover Magazine — explain why he never got the Nobel Prize for it. (He was eventually awarded the  the 1921 Nobel Prize in Physics for his explanation of the photoelectric effect.)

 
A century after Einstein hypothesized that gravitational waves may exist, scientists who have been trying to track such waves are gearing up for a news conference. (Reuters)

So scientists came up with a series of tests of general relativity. The biggest took place in 1919, when British physicist Sir Arthur Eddington took advantage of a solar eclipse to see if light from stars bent as it made its way around the sun (as Einstein said it should). It did, surprising Einstein not in the slightest.

According to Cosmos, when he was asked what he would have done if the measurements had discredited his theory, the famous physicist replied: “In that case, I would have to feel sorry for God, because the theory is correct.”

[Inside LIGO: Physicists detect gravitational waves]

One by one, successive experiments proved other aspects of general relativity to be true, until all but one were validated. No one, not even Einstein, could find evidence of gravitational waves. Eddington, who so enthusiastically demonstrated Einstein’s theory of relativity, declared that gravitational waves were a mathematical phantom, rather than a physical phenomenon. The only attribute the waves seemed to have, he snidely remarked, was the ability to travel “at the speed of thought.” In the end, Einstein himself had doubts. Twice he reversed himself and declared that gravitational waves were nonexistent, before turning another about-face and concluding that they were real.


A small statue of Albert Einstein is seen at the Einstein Archives of Hebrew University in Jerusalem on Feb. 11, 2016, during presentation of the original 100-year-old documents of Einstein’s prediction of the existence of gravitational waves.(Abir Sultan/EPA)

Time passed. A global depression happened, followed by a global war. A reeling and then resurgent world turned its scientific eye toward other prizes: bombs, rockets, a polio vaccine. Then, in the 1960s, an engineering professor at the University of Maryland decided he would try his hand at capturing the waves that had so eluded the man who first conceived of them.

The engineer, Joe Weber, set up two aluminum cylinders in vacuums in labs in Maryland and Chicago. The tiny ripples of gravitational waves would cause the bars to ring like a bell, he reasoned, and if both bars rang at once, then he must have found something.

Weber declared his first discovery in 1969, according to the New Yorker. The news was met with celebration, then skepticism, as other laboratories around the country failed to replicate his experiment. Weber never gave up on his project, continuing to claim new detections until he died in 2000. But others did. It didn’t help that gravitational waves supposedly detected by a South Pole telescope in 2014 turned out to be  merely a product of cosmic dust.

People were inclined to believe, physicist Rainer Weiss told the New Yorker, that gravitational-wave hunters were “all liars and not careful, and God knows what.”

[A brief history of gravity, gravitational waves and LIGO

Weiss would prove them wrong. Now 83, he was a professor at the Massachusetts Institute of Technology when Weber first started publishing his purported discoveries.

“I couldn’t for the life of me understand the thing he was doing,” he said in a Q&A for the university website. “That was my quandary at the time, and that’s when the invention was made.”

Weiss tried to think of the simplest way to explain to his students how gravitational waves might be detected, and came up with this: Build an immense, L-shaped tunnel with each leg an equal length and a mirror at the far ends, then install two lasers in the crook of the L. The beams of light should travel down the tunnels, bounce off the mirrors, and return to their origin at the same time. But if a gravitational wave was passing through, spacetime would be slightly distorted, and one light beam would arrive before the other. If you then measure that discrepancy, you can figure out the shape of the wave, then play it back as audio. Suddenly, you’re listening to a recording of the universe.

That idea would eventually become the Laser Interferometer Gravitational-Wave Observatory (LIGO), the pair of colossal facilities in Washington and Louisiana where the discovery announced Thursday was made.


But not without overcoming quite a few obstacles.

For one thing, even though gravitational waves are all around us, only the most profound events in the universe produce ripples dramatic enough to be measurable on Earth — and even those are very, very faint. For another, an instrument of the size and strength that Weiss desired would require a host of innovations that hadn’t even been created yet: state-of-the-art mirrors, advanced lasers, supremely powerful vacuums, a way to isolate the instruments from even the faintest outside interference that was better than anything that had existed before. The L tunnel would also have to be long — we’re talking miles here — in order for the misalignment of the light beams to be detectable. Building this instrument was not going to be easy, and it was not going to be cheap.

And there would need to be two of them. The principles of good scientific inquiry, which requires that results be duplicated, demanded it.

It took a few decades and a number of proposals, but in 1990 the National Science Foundation finally bit. Weiss and his colleagues could have $272 million for their research.

“It should never have been built,” Rich Isaacson, a program officer at the National Science Foundation at the time, told the New Yorker. “There was every reason to imagine [LIGO] was going to fail,” he also said.

But it didn’t. Twenty-one years and several upgrades after ground was broken on the first LIGO lab, the instruments finally found something on Sept. 14, 2015.

Like most scientific discoveries, this one started not with a “Eureka,” but a “Huh, that’s weird.”

That’s what Marco Drago, a soft-spoken post-doc sitting at a desk in Hanover, Germany, thought when he saw an email pop up in his inbox. It was from a computer program that sorts through data from LIGO to detect evidence of gravitational waves. Drago gets those messages almost daily, he told Science Magazine — anytime the program picks up an interesting-seeming signal.

This was a big one. Almost too big, considering that Sept. 14 was the very first day of official observations for the newly revamped LIGO instruments. Drago could only assume that the pronounced blip in his data was a “blind injection,” an artificial signal introduced to the system to keep researchers on their toes, make sure that they’re able to treat an apparently exciting development with the appropriate amount of scrutiny.

But the injection system wasn’t supposed to be running yet, since research had just started. After about an hour of seeking some other explanation, Drago sent an email to the whole LIGO collaboration, he told Science: Was there an injection today? No, said an email sent that afternoon. Something else must have caused it.

But no one had an explanation for the signal. Unless, of course, it was what they were looking for all along.
 
An aerial photo shows Laser Interferometer Gravitational-Wave Observatory (LIGO) Hanford laboratory detector site near Hanford, Washington in this undated photo released by Caltech/MIT/LIGO Laboratory on Feb. 8, 2016. (Caltech/MIT/LIGO Laboratory/Handout via Reuters)

Chad Hanna, an assistant professor of physics at Pennsylvania State University who was also part of the LIGO team, blanched as he read the successive emails about the weird signal. He and his colleagues had joked about their instruments detecting something on Day One, he wrote for  the Conversation, but no one imagined that it could really happen.

“My reaction was, ‘Wow!’” LIGO executive director David Reitze said Thursday, as he recalled seeing the data for the first time. “I couldn’t believe it.”

Yet, as the weeks wore on and after an exhaustive battery of tests — including an investigation to make sure that the signal wasn’t the product of some ill-conceived prank or hoax — all the other possible sources of the signal were rejected. Only one remained: Long ago and far from Earth, a pair of black holes began spiraling around one another, getting closer and closer, moving faster and faster, whirling the spacetime around them, until, suddenly, they collided. A billion years later, a ripple from that dramatic collision passed through the two LIGO facilities, first in Louisiana, then, after 7 milliseconds, in Washington.

The realization of what they’d found hit the LIGO collaborators differently. For some, it was a vindication — for themselves as well as the men who inspired them: “Einstein would be beaming,” Kip Thorne, a Cal-Tech astrophysicist and co-founder of the project with Weiss, said at the news conference Thursday.

After the briefing, he also credited Weber, the UMD professor: “It does validate Weber in a way that’s significant. He was the only person in that era who thought that this could be possible.”


Thorne told Scientific American that he’s feeling a sense of “profound satisfaction” about the discovery. “I knew today would come and it finally did,” he said.

For Weiss, who had invested half his life in the search for gravitational waves, there’s just an overpowering sense of relief.

“There’s a monkey that’s been sitting on my shoulder for 40 years, and he’s been nattering in my ear and saying, ‘Ehhh, how do you know this is really going to work? You’ve gotten a whole bunch of people involved. Suppose it never works right?'” he told MIT. “And suddenly, he’s jumped off.”

But the mood Thursday was mostly one of awe, and joy, and excitement to see what comes next.

Neil deGrasse Tyson, director of the Hayden Planetarium at the American Museum of Natural History and celebrity astrophysicist, joined a gathering of Columbia University scientists who had been involved in the LIGO project. They cheered as they watched the Washington, D.C., news conference where Reitze announced the find.


“One hundred years feels like a lifetime, but over the course of scientific exploration it’s not that long,” Tyson told Scientific American  about the long search for gravitational waves. “I lay awake at night wondering what brilliant thoughts people have today that will take 100 years to reveal themselves.”

Fascinating photos of our solar system and beyond

View Photos
New discoveries about Jupiter’s Great Red Spot and the latest images of Pluto.


New discoveries about Jupiter’s Great Red Spot and the latest images of Pluto.

The collision of two black holes holes - a tremendously powerful event detected for the first time ever by the Laser Interferometer Gravitational-Wave Observatory (LIGO) is seen in this still image from a computer simulation released on Feb. 11. Scientists have for the first time detected gravitational waves, ripples in space and time hypothesized by Albert Einstein a century ago, in a landmark discovery that opens a new window for studying the cosmos. Caltech/MIT/LIGO Laboratory/Reuters

Sources:

Sunday, 17 June 2012

Quantum Computing? Quantum Bar Magnets in a Transparent Salt

ScienceDaily (June 15, 2012) — Scientists have managed to switch on and off the magnetism of a new material using quantum mechanics, making the material a test bed for future quantum devices.
This image shows the antiferromagnetic arrangement of the spins (colored arrows) in the magnetic salt used by the Swiss-German-US-London team. (Credit: University College London)
The international team of researchers led from the Laboratory for Quantum Magnetism (LQM) in Switzerland and the London Centre for Nanotechnology (LCN), found that the material, a transparent salt, did not suffer from the usual complications of other real magnets, and exploited the fact that its quantum spins -- which are like tiny atomic magnets -- interact according to the rules of large bar magnets. The study is published in Science.

Anybody who has played with toy bar magnets at school will remember that opposite poles attract, lining up parallel to each other when they are placed end to end, and anti-parallel when placed adjacent to each other. As conventional bar magnets are simply too large to reveal any quantum mechanical nature, and most materials are too complex for the spins to interact like true bar magnets, the transparent salt is the perfect material to see what's going on at the quantum level for a dense collection of tiny bar magnets.

The team were able to image all the spins in the special salt, finding that the spins are parallel within pairs of layers, while for adjacent layer pairs, they are antiparallel, as large bar magnets placed adjacent to each other would be. The spin arrangement is called "antiferromagnetic." In contrast, for ferromagnets such as iron, all spins are parallel.

By warming the material to only 0.4 degrees Celsius above the absolute "zero" of temperature where all classical (non-quantum) motion ceases, the team found that the spins lose their order and point in random directions, as iron does when it loses its ferromagnetism when heated to 870 Celsius, much higher than room temperature because of the strong and complex interactions between electron spins in this very common solid.

The team also found that they could achieve the same loss of order by turning on quantum mechanics with an electromagnet containing the salt. Thus, physicists now have a new toy, a collection of tiny bar magnets, which naturally assume an antiferromagnetic configuration and for which they can dial in quantum mechanics at will.

"Understanding and manipulating magnetic properties of more traditional materials such as iron have of course long been key to many familiar technologies, from electric motors to hard drives in digital computers," said Professor Gabriel Aeppli, UCL Director of the LCN.

"While this may seem esoteric, there are deep connections between what has been achieved here and new types of computers, which also rely on the ability to tune quantum mechanics to solve hard problems, like pattern recognition in images."

Thursday, 17 May 2012

Teach and Learn!

To teach is to learn for Leong 



GEORGE TOWN: Lecturer Leong Kit Hong wants to go on teaching. And to do that, he will go on learning.

The 67-year-old INTI International College Penang physics lecturer is now pursuing a degree in Telecommunication in Wawasan Open University here.

He already holds a degree in Physics, Mathematics and a Master's in Physics.

Meaningful gift: Leong (second right) and other lecturers choosing their syngonium plant at the Teachers Day celebration at INTI International College Penang Wednesday.
 
Leong, who joined the teaching profession 40 years ago, said the best way for him to serve the community was to be a good educationist, and he felt that all educationists should have the right blend of skills and the latest knowledge.

Leong, who is one of the college's pioneer lecturers, said his greatest satisfaction “is seeing my students do as best as they can be”.

“When they do well in their studies, they will be able to serve society well later on,” he added.

Asked about his retirement plans, the grandfather of two said he would continue to teach as long as his health allowed him.

Leong, who has been teaching at the college for the past 18 years, was among the lecturers who joined the Teachers Day celebration at the college yesterday.

College chief executive principal Dr Michael Yap Sau Moi said 80 full-time lecturers were presented with a syngonium plant each.

“Teachers plant seeds of knowledge that grow forever,” he said. “As such, we chose to honour our lecturers with this plant instead of the usual roses.”

By KOW KWAN YEE
kowky@thestar.com.my

Monday, 19 March 2012

'Quantum criticality': Ultracold experiments heat up quantum research

Ultracold experiments heat up quantum research
Enlarge

This false color image shows the average density of cesium atoms taken during multiple experimental cycles for studying quantum criticality in the ultracold laboratory of Cheng Chin, associate professor in physics at UChicago. The density is lowest in the white area on the outside, highest toward the center, where higher numbers of atoms are blocking the incoming infrared laser light. Xibo Zhang collected these data in connection with his recently completed doctoral research at UChicago. (Xibo Zhang and Cheng Chin)

(PhysOrg.com) -- University of Chicago physicists have experimentally demonstrated for the first time that atoms chilled to temperatures near absolute zero may behave like seemingly unrelated natural systems of vastly different scales, offering potential insights into links between the atomic realm and deep questions of cosmology.

This ultracold state, called “ criticality,” hints at similarities between such diverse phenomena as the gravitational dynamics of black holes or the exotic conditions that prevailed at the birth of the universe, said Cheng Chin, associate professor in physics at UChicago. The results could even point to ways of simulating cosmological phenomena of the early universe by studying systems of in states of .

“Quantum criticality is the entry point for us to make connections between our observations and other systems in nature,” said Chin, whose team is the first to observe quantum criticality in ultracold atoms in optical lattices, a regular array of cells formed by multiple laser beams that capture and localize individual atoms.

UChicago graduate student Xibo Zhang and two co-authors published their observations online Feb. 16 in Science Express and in the March 2 issue of Science.

Quantum criticality emerges only in the vicinity of a quantum phase transition. In the physics of everyday life, rather mundane phase transitions occur when, for example, water freezes into ice in response to a drop in . The far more elusive and exotic quantum phase transitions occur only at ultracold temperatures under the influence of magnetism, pressure or other factors.

“This is a very important step in having a complete test of the theory of quantum criticality in a system that you can characterize and measure extremely well,” said Harvard University physics professor Subir Sachdev about the UChicago study.

have extensively investigated quantum criticality in crystals, superconductors and magnetic materials, especially as it pertains to the motions of electrons. “Those efforts are impeded by the fact that we can’t go in and really look at what every electron is doing and all the various properties at will,” Sachdev said.

Sachdev’s theoretical work has revealed a deep mathematical connection between how subatomic particles behave near a quantum critical point and the gravitational dynamics of black holes. A few years hence, offshoots of the Chicago experiments could provide a testing ground for such ideas, he said.

There are two types of critical points, which separate one phase from another. The Chicago paper deals with the simpler of the two types, an important milestone to tackling the more complex version, Sachdev said. “I imagine that’s going to happen in the next year or two and that’s what we’re all looking forward to now,” he said.

Other teams at UChicago and elsewhere have observed quantum criticality under completely different experimental conditions. In 2010, for example, a team led by Thomas Rosenbaum, the John T. Wilson Distinguished Service Professor in Physics at UChicago, observed quantum criticality in a sample of pure chromium when it was subjected to ultrahigh pressures.

Zhang, who will receive his doctorate this month, invested nearly two and a half years of work in the latest findings from Chin’s laboratory. Co-authoring the study with Zhang and Chin were Chen-Lung Hung, PhD’11, now a postdoctoral scientist at the California Institute of Technology, and UChicago postdoctoral scientist Shih-Kuang Tung.

In their tabletop experiments, the Chicago scientists use sets of crossed laser beams to trap and cool up to 20,000 cesium atoms in a horizontal plane contained within an eight-inch cylindrical vacuum chamber. The process transforms the atoms from a hot gas to a superfluid, an exotic form of matter that exists only at temperatures hundreds of degrees below zero.

“The whole experiment takes six to seven seconds and we can repeat the experiment again and again,” Zhang said.
The experimental apparatus includes a CCD camera sensitive enough to image the distribution of atoms in a state of quantum criticality. The CCD camera records the intensity of laser light as it enters that vacuum chamber containing thousands of specially configured ultracold atoms.

“What we record on the camera is essentially a shadow cast by the atoms,” Chin explained.

The UChicago scientists first looked for signs of quantum criticality in experiments performed at ultracold temperatures from 30 to 12 nano-Kelvin, but failed to see convincing evidence. Last year they were able to push the temperatures down to 5.8 nano-Kelvin, just billionths of a degree above (minus 459 degrees Fahrenehit). “It turns out that you need to go below 10 nano-Kelvin in order to see this phenomenon in our system,” Chin said.

Chin’s team has been especially interested in the possibility of using ultracold atoms to simulate the evolution of the early universe. This ambition stems from the quantum simulation concept that Nobel laureate Richard Feynman proposed in 1981. Feynman maintained that if scientists understand one quantum system well enough, they might be able to use it to simulate the operations of another system that can be difficult to study directly.

For some, like Harvard’s Sachdev, quantum criticality in ultracold atoms is worthy of study as a physical system in its own right. “I want to understand it for its own beautiful quantum properties rather than viewing it as a simulation of something else,” he said.

More information: “Observation of Quantum Criticality with Ultracold Atoms in Optical Lattices,” by Xibo Zhang, Chen-Lung Hung, Shih-Kuang Tung, and Chen Chin, Science, March 2, 2012, Vol. 335, No. 6072, pp. 1070-1072, and online Feb. in Science Express Feb. 16.

Provided by University of Chicago (news : web)

Newscribe : get free news in real time 

Related posts:
IBM takes giant step to faster, quantum computers
A quantum connection between light and motion
Quantum strategy offers game-winning advantages ...
IBM Scalable Quantum Computing
Quantum Computing Thrives on Chaos
Engineering the Computer of the Future, One Atom at a ...
 

Wednesday, 14 March 2012

Quantum strategy offers game-winning advantages, even without entanglement

Quantum strategy offers game-winning advantages, even without entanglementfeature
By Lisa Zyga PhysOrg.com

Enlarge

Experimental and theoretical results both show that quantum gain - measured as the difference between the winning chances for classical and quantum players - is highest under maximum entanglement. Quantum gain remains even when entanglement disappears, and approaches zero along with the discord. Image credit: Zu, et al. ©2012 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

(PhysOrg.com) -- Quantum correlations have well-known advantages in areas such as communication, computing, and cryptography, and recently physicists have discovered that they may help players competing in zero-sum games, as well. In a new study, researchers have found that a game player who uses an appropriate quantum strategy can greatly increase their chances of winning compared with using a classical strategy.

The researchers, Chong Zu from Tsingua University in Beijing, China, and coauthors, have published their study on how mechanics can help in a recent issue of the .

In their study, the researchers focused on a two-player game called matching pennies. In the classical version of this game, each player puts down one penny as either heads or tails. If both pennies match, then Player 1 wins and takes both pennies. If one penny shows heads and the other shows tails, then Player 2 wins and takes both pennies. Since one player’s gain is always the other player’s loss, the game is a zero-sum game.

In the classical version of the game, neither player has any incentive to choose one side of the coin over the other, so players choose heads or tails with equal probability. The random nature of the players’ strategies results in a “mixed strategy Nash equilibrium,” a situation in which each player has only a 50% chance of winning, no matter what strategy they use.

But here, Zu and coauthors have found that a player who has the option of using a quantum strategy can increase his or her chances of winning from 50% to 94%. This quantum version of the game uses entangled photons as qubits instead of pennies. And instead of choosing between heads and tails, players use a polarizer and single-photon detector to implement their strategies. While the classical player can still choose only one of two states, the quantum player has more choices due to her ability to rotate a polarizer 360° before the single-photon detector. The researchers calculated that the quantum player can maximize his or her chances of winning by rotating the polarizer at a 45° angle.

“Each player can apply any operation to their qubit (or coin), and then measure it in computational basis,” Zu explained to PhysOrg.com. “For a classical player, the operation he can do is to flip the bit or just leave it unchanged. However, if a player has quantum power, he can apply arbitrary single-bit operations to his qubit. But the measurement part is the same for the quantum and classical players.”

The researchers found that the quantum advantage depends heavily on how correlated the original photons are, with a maximally entangled state providing the largest gain. The researchers were surprised to find that the quantum advantage doesn’t decrease to zero when entanglement disappears completely, since a different kind of quantum correlationquantum discord – also provides an advantage. This finding may even be the most interesting part of the study.

“There is no wonder that quantum mechanics will lead to advantages in game theory, but the interesting part of our work is that we find out the quantum gain does not decrease to zero when entanglement disappears,” Zu said. “Instead, it links with another kind of quantum correlation described by discord for the qubit case, and the connection is demonstrated both theoretically and experimentally.”

He added that this finding could potentially be useful for making real-world strategies.

“Our work may help people to understand how works in game theory (in some cases, entanglement is not necessary for a quantum player to achieve a positive gain),” he said. “It may also give a good example of people making strategies in a future quantum network.”

More information: C. Zu, et al. “Experimental demonstration of quantum gain in a zero-sum game.” New Journal of Physics, 14 (2012) 033002. DOI: 10.1088/1367-2630/14/3/033002

Related posts:

IBM Scalable Quantum Computing
Can The Human Brain See Quantum Images?
A quantum connection between light and motion
Quantum Computing Thrives on Chaos
The Quantum Physics Behind The Death Of Osama Bin ... 

 Newscribe : get free news in real time